Contribution of glycosaminoglycans to viscoelastic tensile behavior of human ligament.
نویسندگان
چکیده
The viscoelastic properties of human ligament potentially guard against structural failure, yet the microstructural origins of these transient behaviors are unknown. Glycosaminoglycans (GAGs) are widely suspected to affect ligament viscoelasticity by forming molecular bridges between neighboring collagen fibrils. This study investigated whether GAGs directly affect viscoelastic material behavior in human medial collateral ligament (MCL) by using nondestructive tensile tests before and after degradation of GAGs with chondroitinase ABC (ChABC). Control and ChABC treatment (83% GAG removal) produced similar alterations to ligament viscoelasticity. This finding was consistent at different levels of collagen fiber stretch and tissue hydration. On average, stress relaxation increased after incubation by 2.2% (control) and 2.1% (ChABC), dynamic modulus increased after incubation by 3.6% (control) and 3.8% (ChABC), and phase shift increased after incubation by 8.5% (control) and 8.4% (ChABC). The changes in viscoelastic behavior after treatment were significantly more pronounced at lower clamp-to-clamp strain levels. A 10% difference in the water content of tested specimens had minor influence on ligament viscoelastic properties. The major finding of this study is that mechanical interactions between collagen fibrils and GAGs are unrelated to tissue-level viscoelastic mechanics in mature human MCL. These findings narrow the possible number of extracellular matrix molecules that have a direct contribution to ligament viscoelasticity.
منابع مشابه
Contribution of Glycosaminoglycans to the Viscoelastic Tensile Behavior of Human Ligament
Introduction: Viscoelastic behavior is intrinsic to human ligament and may guard against structural failure. Glycosaminoglycans (GAGs) have been implicated as macromolecules that likely impact ligament viscoelasticity [1-2]. GAGs selfassociate [3] and may mechanically connect adjacent collagen fibrils and thus influence fibril sliding during tension. Although studies have shown GAGs to influenc...
متن کاملThe Effect of Polarized Laser Radiation on Viscoelastic Properties of Soft Tissue
Background: Laser-tissue interaction on low-level laser therapy (LLLT) has widespread medical applications (e.g., improved wound healing). The tensile strength of radiated tissue by LLLT is known to be increased mainly because of cross collagen bands developed after radiation.Objective: In this work, we studied the instantaneous effect of radiation of polarized laser beam on the viscoelastic ti...
متن کاملEffect of dermatan sulfate glycosaminoglycans on the quasi-static material properties of the human medial collateral ligament.
The glycosaminoglycan of decorin, dermatan sulfate (DS), has been suggested to contribute to the mechanical properties of soft connective tissues such as ligaments and tendons. This study investigated the mechanical function of DS in human medial collateral ligaments (MCL) using nondestructive shear and tensile material tests performed before and after targeted removal of DS with chondroitinase...
متن کاملA Mathematical Approach for Describing Time-Dependent Poisson’s Ratios of Periodontal Ligaments
Periodontal ligament is a thin layer of soft tissue that connects root of a tooth to the surrounding alveolar bone. These ligaments play an important role in initiating tooth movement when loads are applied to teeth with orthodontic appliances. The majority of such soft tissues exhibit as viscoelastic bodies or have a time-dependent behavior. Due to the viscoelastic behavior of the periodontal ...
متن کاملInfluence of Sulfated Glycosaminoglycans on the Transverse Permeability of Porcine Medial Collateral Ligament
INTRODUCTION: Glycosaminoglycans (GAGs) contribute to the hydration of articular cartilage, ligament, and tendon through osmotic and electrostatic interactions with polar water molecules [1]. This mechanism is a strong determinant of perceived viscoelastic behavior of some biological soft tissues under deformation [2-4]. The apparent permeability describes the freedom of fluid to flow through a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 106 2 شماره
صفحات -
تاریخ انتشار 2009